skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shamshina, Julia L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 15, 2026
  2. Nanochitin, especially in the form of chitin nanowhiskers (ChNWs), represents a significant advance in biopolymer technology due to its high specific surface area, superior tensile strength, and excellent thermal stability. Derived from crustacean waste, which contains 15–40% of chitin, these materials provide a sustainable option that diverts waste from landfills and contributes to environmental conservation. Traditional methods of isolating nanochitin are energy-intensive and generate substantial waste. This study introduces a more sustainable method using inexpensive ionic liquids (ILs) such as [Hmim][HSO4] and [HN222][HSO4], which bypass the costly and destructive steps of traditional procedures. This study also identified the byproduct in IL-mediated chitin hydrolysis reaction as calcium sulfate dihydrate and presented a solution to circumvent the byproduct formation. The effectiveness of the [HN222][HSO4] IL in producing ChNWs from both purified chitin and crustacean biomass was assessed, showing a high yield and maintaining the purity and structural integrity of chitin, thereby demonstrating a significant reduction in the environmental footprint of ChNW production. 
    more » « less